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13. ABSTRACT (Mwmmum 200 wovqk
In an attempt to evaluate the merits of massively parallel processing computers for
the numerical simulation of blast phenomena. the U.S. Army Research Laboratory (ARL)
has adapted one of its blast modeling tools to several unique parallel architec-
tures. This report describes the adaptation of the BRL-4Q1D code, a quasi-one--
dimensional, finite difference Euler solver, to the Intel iPSCI86O parallelI super-
computer. The code was reconfigured for the iPSCI86O using FORTRAN4 77 and the
Intel LPSCI86O message-passing library. The performance of the code was measured
on the iPSC/860 for a vAriety of problem sizes and processor configurations. Tl;e

w performance was found to be highly dependent on the size of the problem. This
problem size dependency was most noticeable when fever processors were employed.
Results of scalability tests indicate that the code performance sc.nles in a
roughly linear fashion about extrapolated lines of ideal performance.
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1. Background

Due to the rising costs of large-scale experimentation and the uncertainty of scaling
effects in experiments, the U.S. Army is becoming increasingly dependent on computer sim-
ulations to assess the vulnerability of military systems to nuclear blast. Present vector
supercomputer technology can provide detailed fluid dynamic simulations in two dimensions
in a production environment (less than 10 CPU hours). Three-dimensional simulations em-
ploying limited spatial resolution, whiich are only sufficient for modeling relatively simple
geometries, still require 100 or more CPU hours on a vector supercomputer.

Obviously, these low resolution simulations with simple geometries do not provide suffi-
cient information about the vulnerability of specific military systems to the overturning or
crushing effects of blast produced by tactical nuclear weapons. To provide accurate assess-
ments of system vulnerability, highly detailed three-dimensional simulations with coupled
fluid-structure interaction are required. To make this type of numerical simulation possi-
ble, increases in supercomputer performance of two or more orders of magnitude must be
realized.

The rapidly maturing field of massively parallel processing (MPP) has the potential to
offer the compute performance required for detailed three-dimensional fluid dynamic simu-
lations. There are many different types MPP machines available oln the computer market
today. However, generally speaking, most current MPP computers have the following two
basic characteristics:

1. They combine the resources of a large number of processors to simultaneously solve
different parts of a large problem.

2. Each processor has its own bank of local memory.

Particular MPP computers differ primarily in the way the processors access data in their own
memory and data in the memory of other processors. These data access methods typically
define the programming methods which are required to extract maximum performance from
all of the resources that the machine has to offer.

As a means of evaluating MPP technology, the U.S. Army Research Laboratory (ARL)
continuously adapts one of its blast modeling tools to emerging MPP computer platforms.)
Through continuous evaluation of MPP computers, the ARL can configure its software tools
to exploit this techncology, thus making detailed three-dimensional fluid dynamic simulations
available in a production computing environment.

2. The iPSC/860

The Intel iPSC/860 was the parallel computer chosen for the adaptation and evaluation
described in this report. The iPSC/860 is a Multiple Instruction / Multiple Data (MIMD)
parallel computer. This implies that the processors of the computer can perform a number of
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different operations simultaneously, if requested to do so. This is quite different from a Single
Instruction / Multiple Data (SIMD) computer, in which all of the computers processors
perform identical operations, simultaneously, on different sections of data.

The heart of the iPSC/860 is a set of Intel i860 microprocessors. Each of these proces-
sors has a fixed amount of local memory. Systems configured this way are often referred
to as "distributed memory multiprocessors." Most current MPP machines are distributed
memory architectures. The individual processors of tile iPSC/860 are linked together by an
interconnect network which allows high bandwidth data transfer between processors. The
earlier model of the iPSC/860, known as the Gamma, employs a hypercube topology as the
interconnect network. 2 A hypercube can be envisioned as a large number of nested cubes
with each point of a cube representing a node, or processor, in the system. The later model
iPSC/860, called the Delta, employs a two-dimensional mesh topology as the processor in-
terconnect network. Each type of interconnect network is designed to have a max-mum
number of connections between available processors, while at the same time minimizing the
distance that data must travel when moving from its originating processor to its destination
processor.

Like most MPP machines, the iPSC/860 is designed to be a scalable system. As such,
it should be possible to linearly increase the compute performance of an application by
increasing the number of processors allocated to the application. Thus scalability is the
motivation in the development of MPP computers. In a truly scalable system, a desired level
of performance can be obtained by simply acquiring the necessary quantity of processors.
This is potentially more cost-effective than obtaining performance gains through advances
in single processor design.

Unfortunately, building a scalable architecture is only half of the solution to obtaining
increased performance. To optimally employ all of the iesources provided by MPP com-
puters, the application's algorithm must be designed to be scalable as well. Optimum algo-
rithm design for the iPSC/860, and most other MIMD machines, is accomplished through
a style of programming known as message-passing. When a parallel application is run on
the iPSC/860, the data is distributed among the available memory of the processors being
used. If a particular processor needs access to a piece of data stored in another processor's
memory to perform a calculation, then that data must be transterred from khe originating
processor to the processor which needs the data. To accomplish this data transmission, the
application must be written to explicitly pass the data from the original processor, to the
target processor. 3

One potential bottleneck in distributed memory parallel computers is this transfer of
data between processors. Even though the processors are connected by a high-speed net-
work, the time required to move data between processors is typically much greater than the
time spent by the receiving processor executing a floating point instruction using that data.
Consequently, the ultimate goal in developing an algorithmr which employs message-passing
techniques is to minimize time spent transferring data, thereby maximizing the time spent in
computing the solu'tion. With this in mind, the algorithm designer must be sure to transfer
only that data which is necessary for the calculations to be performed correctly.
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3. Blast Modeling Application

The BRL-Q1D code was selected as the blast modeling application which is used by
the ARL to eva!'jate the programming environment and the computational performance of
massively parallel computers. BRL-Q1D is a quasi-one-dimensional, finite difference, single
material, polytroý'-" gas fluid dynamics code and is primarily used to simulate flow in shock
tubes. This code was chosen for its relative simplicity and its algorithmic similarities to the
two- and three-dimensional codes that are currently used for blast modeling applications.
Therefore, adaptation of this code is the most cost-effective means of evaluating massively
parallel computer architectures. The similarities in the solution algorithms of BRL-Q1D and
more complex multidimensional codes can provide insight to the potential performance of
these more complex codes on MPP computers.

The BRL-QLD code incorporates two computational techniques, an implicit finite dif-
ference technique 4 and an explicit finite difference scheme.5 Only one of these algorithms
may be used in a particular BRL-Q1D calculation. The solution scheme which is employed
is determined by a set of user-defined input options. The solution algorithms are applied to
the quasi-one-dimensional Euler equations in th 'r weak conservative form. 6

One multidimensional fluid dynamics code used extensively at ARL for the numerical
simulation of blast effects is the SHARC code. SHARC is an explicit, finite difference
Euler solver which is second-order accurate in space and time.7 Because of its algorithmic
similarities to the SHARC code, only the explicit algorithm of the BRL-Q1D code was
adapted to the iPSC/860.

The MacCormack explicit scheme employed in BRL-Q1D is a second-order, non-centered,
predictor-corrector technique that alternatively uses forward and backward differences for
the two steps. The first step predicts the value of the state variables at a grid point based
on the values of the grid point and its neighboring downstream grid point. The second step
then corrects these state variables based on the values at the grid point and its neighboring
upstream grid point.

Prior to its adaptation to the iPSC/860, the BRL-Q1D code existed in standard For-
tran 77 form and the explicit, finite difference algorithm had been optimized for maximum
performance on vector supercomputers. So that it could obtain maximum performance on
the iPSC/860, the code was modified to evenly distribute the arrays among the available
processors and then calls to the iPSC message-passing library were inserted where necessary
for the transmission of data between processors.

The even distribution of arrays among available processors is a technique which is often
referred to as "domain decomposition." In the case of the one-dimensional code, domain
decomposition is nothing more than evenly dividing the number of available processors into
the number of grid points being used by the calculation, then placing that number of adjacent
grid points on successive processors. For example, to distribute an 800 grid point calculation
among 8 processors, grid points 1 to 100 would be placed on processor 0, 101 to 200 on
processor 1, etc. The BRL-QLD code was modified in such a way that each time the code
was run, it would •;atomatically determine the number of processors that were available,
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and dynamically allocate the arrays based on the grid size and this returned number of
processors. Of course, domain decomposition in two or three spatial dimensions can be
mucha more complex than this simple one-dimensional case. This is especially true when
complex geometries are being modeled.

After the domain decomposition scheme had been developed, it was then imposed on the
solution algorithm, so that the computational load would be evenly distributed among the
processors. In the original Fortran 77 implementation of the BRL-QlD code, the successive
prediction and correction of state variables was accomplished through the use of DO loops
which proceed through the one-dimensional grid, from beginning to end, in one grid point
increments. For the message-passing implementation, the range of DO loop operation on a
particular processor was limited to the grid points which were allocated to that processor.
If a calculation required data from a grid point which does not reside on the processor doing
the calculation, that data is passed to the processor prior to the calculation. The following
examples of original Fortran 77 code and message-passing code illustrate this logic.

Segment of Original Fortran 77 Code

do 20 jw2,jmax-l
s(j,1) - q(j,1) - dt*(f(j+1,1)-f(j,1))

20 continue

Segment of Equivalent Message Passing Code

istart'-ibeg(mynode ( ) +1)
istop -iend(mynode(+1)
if (istart.eq. 1) istart=2
if (istop .eq.jmax) istop =jmax-1
if (nuamnodeso.ne.1) call passleft(f,l)
do 20 j-istart,istop

s(j,l) - q(j,l) - dt*(f(j+1,1)-f(j,M))
20 continue

These code segments bre examples of a predictor step in the explicit algorithm. In these
examples, the array s is being calculated from the arrays q and f and a constant, dt for
all grid points between the second and the next to the last, inclusive. The calculations for
the first and last grid points are performed in a separate boundary condition subroutine.
The functionality of the Fortran 77 code is obvious from the example given above. In the
message-passing example, the vectors ibeg and lend represent the beginning and ending array
indices assigned to each processor in the domain decomposition subroutine. In the case of 3

the first processor, the value of ibeg is reset from a value of 1 to 2 in order to conform to the
limits on the DO loop in the Fortran 77 example. In a similar fashion, the value of iend is
reset from Jmax to jmax-1.

In the message-passing example, when the calculation of the state variable s reaches
the last iteration in the loop on a particular processor, a value from the f array which
resides on a neighboring processor is required. For this calculation to be performed properly,
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all processors except the first pass the first element of f on the processor to the adjacent
processor on the left. This operation is initiated by the call to the subroutine passlft in the
example. The first argument in the call to the passleft subroutine is the name of the array to
be passed. The second argument is the number of elements to be passed between processors.
If the caculation of s had used a f(j+'2,1) term, then all processors except the first would
pass two elements of f to the left neighboring processor. For the the corrector step in the
explicit algorithm, an analogous passright subroutine is used in which all processors except
the last pass data from the specified array to the neighboring processor on the right.

To further illustrate the techniques employed in message-passing programming, the
passleft subroutine is listed below. This subroutine listing shows the process by which proces-
sors pass the first n sub-array elements in their memory to their respective left neighboring
processor. The receiving processors then store this data as the last n sub-array elements in
memory.

In studying the function of this subroutine, it is important to remember that the sub-
routine runs simultaneously on all of the assigned processors. When the passleft subroutine
is called, data from a particular flow parameter array are stored in a dummy array a. This
dummy array, is a two-dimensional array with the first dimension assigned to be the number
of grid points, jmax, and the second dimension assigned as the number of variables per grid
point for the array, in this case three (energy, density and momentum, for example). The
passleft subroutine is designed to transfer all three of these variables for a given grid point
for any particular call to the subroutine. The listing of the passleft subroutine shows the
following steps which are taken to transfer the data:

1. The send and receive indices for each processor are defined. These indices becomes
counters in a DO loop if data from multiple grid points are to be transferred between
processors.

2. All of the processors are synchronized in time so that the communication takes place
simultaneously on the processors.

3. On all processors except the first, the three variables for a given grid point of the dummy
array a are written into a temporary, three elemer't array b. The particular grid point
is defined by the send index.

4. All of the processors except the first send the contents of array b to the left neighboring
processor.

5. All of the proccessors except the last receive the data sent from the right neighboring
processor and store the data in the temporary, three elemenc array b.

6. On all of the processors except the last, the three variables stored in the b array are
written into the dummy array a for the proper grid point. The particular grid point is
defined here by the receive index.

7. This process is repeated if data from more than one grid point is being transferred.
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Listing of Passleft Subroutine

subroutine pausleft (a,n)
c

c this subroutine passes the first a elements of sub-array
c a from a processor to its left neighbor processor.
c the receiving processor stores the data as the last n
c elements of the sub-array a.
c

include 'param.h:
include 'mimd.h'

C

dimension a(jmax,3),b(3)
C

c is a send index for local node
c ir a receive index for local node
c

is = ibeg(mynodeo+))-I
ir a iend(mynode)+1)

c

do 10 kil,n
i-is-+1
ir=ir+l

call gsync()
if (mynodeo.ne.0) then

do 20 j=1,3
b(j) - a(is,j)

20 continue
call csend (O0b,3*4,mynodeO-1,mypidO)

endif
if (mynodeG).ne.nuimnodesO-1) then

call crecv (0,b,3*4)
do 30 j-1,3

a(ir,j) b(j)
30 continue

endif
10 continue

c
return
end
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4. Results

Whei the adaptation of the BRL-QlD code was completed, the performance of the
code was tested on both Gamma and Delta models of the iPSC/860 architecture. Due
to the nature of the hypercube topology of the iPSC/860 Gamma model, the number of
available processors is always an exact power of two. A Gamma model with 16 processors
was employed for these tests. The iPSC/860 Delta model, with its mesh topology, is not
constrained to the power of two processor requirement of the Gamma. The particular Delta
machine used for the tests has 532 processors. However, only 256 processors were used in
the maximum Delta configuration tests. So that Delta results could be directly compared
with Gamma results, all Delta trials employed power of two processor configurations and
problem sizes.

In all cases, the measured performance of the BRL-QiD code was represented as the
"whiz factor." This is a measure of the average CPU time required for the code to compute
a solution, divided by product of the number of grid points and the number of cycles in
the calculation (ps/grid point/cycle). This is a convenient method of measuring the code's
performance because it normalizes the run time against the problem size and the number of
time steps in the calculations. Thus using the whiz factor as a benchmark, results of different
calculations can be compared directly. For a particular processor configuration and problem
size, the reported performance is the minimum whiz factor (i.e., best performance) out of a
set of several identical trials.

The first set of tests was performed to determine the influence of varying problem size
on code performance. These tests were performed only on the Gamma model. The results
of these tests are illustrated in Figure 1. This figure shows several curves illustrating the
relationship between whiz factor and problem size for different processor configurations. This
figure shows that, for small problems, the performance of the iPSC/860 is highly dependent
on the size of the problem. As the problem size is increased, all of the processor configurations
approach an upper limit on performance (i.e., a minimum whiz factor). All of the curves in
Figure 1 have a similar shape; an initially sharp drop in whiz factor as the problem size is
increased, followed by a bump in the middle of the curve, and ending with a leveling off as the
maximum performance for that processor configuration is reached. The bump in the middle
of each curve is a result of the increasing size of the problem filling the memory systems of
each processor. The curve representing the trials with eight processors is slightly different
from the other curves at the data points corresponding to problem sizes of 2"0 and 211. For
this processor configuration, the performance increased very little from a problem size of 2'
to 210. Then, from 2"0 to 211 the performance increased significantly. In fact, the measured
performance of the code on eight processors is exactly the same as the sixteen processor
result for the same problem size of 2"1. Several additional trials were performed here to
veryify the result, and results were consistent. Thus this appears to be merely an interesting
characteristic of the Gamma model, most likely resulting from a fortuitously optimum layout
of the data in memory for the particular configuration of eight processors running a problem
size of 211.
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As previously discussed, the Delta model allows the user to access arbitrary numbers of
available processors. The Delta also allows users to define the two-dimensional layout of the
processors within the mesh topology. With this in mind, a series of tests was performed to
determine the influence of processor layout on code performance. In this series, a problem
size of 16384 was run on 16 processors of the Delta. Five tests were performed in which
processor layouts of lx16, 2x8, 4x4, 8x2 and 16xl were employed. The results of these tests
are provided in Table 1. Also included in this table is the result of the identical calculation on
the Gamma. These results illustrate that the performance of the BRL-QlD code on the Delta
is independent of processor configuration. Thus it can be assumed that communication of
data between processors is not heavily influenced by the proximity of any two communicating
processors.

Table 1. BRL-Q1D Performance on Delta as a Function of Processor Layout

Processor Whiz Factor
Layout (ps/grid point/cycle)

1x16 7.75
2x8 7.79
4x4 8.42
8x2 7.75
16xl 7.81

G _ma 2_ 4 9.00

As previously discussed, true scalability of both the architecture and the algorithm are
essential to successful exploitation of MPP technology. Thus to determine the scalability of
the BRL-Q1D code on the iPSC/860, a final series of tests was performed in which successive
tests employed increasing numbers of processors. The problem size was accordingly increased
with the increase iii processors, so that lines of constant problem size per processor could be
determined. These tests were performed on both the Gamma and the Delta models and are
illustrated in Figures 2 through 6.

The results shown in Figures 2 to 6 illustrate the scalability te.3ts of Gamma and Delta
using 512 grid points per processor. In these figures, the measured performance data points
for the Gamma are represented by the solid dots, while the data for the Delta is repre-
sented by the star symbols. If the adapted BRL-Q1D algorithm were perfectly scalable on
the Gamma and Delta architectures, then doubling the number of processors used would
result in a factor of two decrease in the whiz factor (i.e., doubling the number of processors
would double the performance). The solid !ine in Figures 2 to 6 represents this ideal scala-
bility which is extrapolated from the measured whiz factor for one processor of the Gamma.
Accordingly, the dashed line represents the same ideal scalability relationship for the Delta.

Due to the logarithmic formulation of the scalability relationship, the ideal scalability
curves result in straight lines when plotted against log-log axes. Figures 2 to 6 show that the
l;nes of ideal scalabilty for both Gamma and Delta pass through the scatter of the measured
data, indicating perfect scalability. These figures also illustrate that the performance of the
Delta is slightly better than that of the Gamma for all cases. This improvement can be
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attributed to advances in compiler technology and system software on the Delta, the later
of the Lwo architectures.

5. Conclusions

This report has outlined the successful implementation of the explicit, finite difference
BRL-QID algorithm on the Intel iPSC/860 parallel conmputer. A division of labor among
processors along with a coordinated use of message-passing between processors was used
to evenly distribute the algorithm across the resources of the architecture. The results
presented in the figures lead us to conclude that this message-passing implementation of the
BRL-Q1D code is indeed perfectly scalable on both hypercube and mesh processor topology
MIMD computers.

The likelihood of a successful implementation to parallel architectures is dependent or.
the level of inherent parallelism ;n the algorithm. The explicit BRL-Q1D algorithm is inher-
ently data parallel. Its inner DO loops typically span the entire computational mesh. As a
result, distribution of the algorithm across processors is easily accomplished.

As stated earlier, the adaptation of the BRL-Q1D code to the iPSC/860 was part of an
attempt to evaluate MPP technology for blast modeling applications. The success of this
and other implementations of the code on MPP computers is an indication that significant
performance improvements can be obtained from the adaptation of large, multidimensional
fluid dynamics codes to MPP platforms.

Other types of codes, however, may not be good candidates for adaptation to parallel
computers. When this is the case, it may be necessary to completely restructure the basic
algorithm in order to increase the level of inherent parallelism. Once this is done, then
the algorithm can be adapted to parallel computers with greater likelihood of a successful
implementation.
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